Good Practice in Archaeological Diagnostics : Non-Invasive Survey of Complex Archaeological Sites.

1. Verfasser: Corsi, Cristina.
Weitere Verfasser: Slapšak, Božidar.
Vermeulen, Frank.
Ort/Verlag/Jahr: Cham : Springer, 2014.
Ausgabe: 1st ed.
Umfang/Format: 1 online resource (339 pages).
Schriftenreihe: Natural science in archaeology
Schlagworte:
Parallelausgabe: Good Practice in Archaeological Diagnostics : Non-Invasive Survey of Complex Archaeological Sites (Print version:)
Online Zugang: Available online
Inhaltsangabe:
  • Intro
  • Contents
  • 1: Good Practice in Archaeological Diagnostics: An Introduction
  • 1.1 Making a 'Radiography' of the Past
  • 1.2 Data Acquisition Versus Understanding
  • 1.3 A Question of Integration
  • 1.4 Size Matters
  • 1.5 The Fourth Dimension
  • References
  • Part I: Remote Sensing
  • 2: Aerial Photography in Archaeology
  • 2.1 Historical Overview and Assessment
  • 2.2 Aerial Photography Techniques
  • 2.3 Principles of Archaeological Photo-Interpretation
  • 2.4 Genesis and Classification of Archaeological Traces
  • 2.4.1 Damp-Marks
  • 2.4.2 Grass-Weed-Crop-Marks
  • 2.4.3 Soil-Marks
  • 2.4.4 Shadow Sites
  • 2.4.5 Topographical Anomalies
  • 2.4.6 Legacy Marks
  • References
  • 3: Undistorting the Past: New Techniques for Orthorectification of Archaeological Aerial Frame Imagery
  • 3.1 Aerial Archaeological Frame Footage: An Introduction and Overview
  • 3.1.1 One Hundred Years of Status Quo
  • 3.1.2 The Vertical Debate
  • 3.1.3 The Rise of the Unmanned Machines
  • 3.1.4 The Mapping Paradigm
  • 3.2 Aerial Frames Offer Deformed Views
  • 3.2.1 (Digital) Aerial Images
  • 3.2.2 Optical Distortions
  • 3.2.3 Tilt Displacement
  • 3.2.4 Relief Displacement
  • 3.2.5 Georeferencing and Geometric Correction
  • 3.3 A New Workflow
  • 3.3.1 SfM + MVS Pipeline
  • 3.3.1.1 Image Acquisition
  • 3.3.1.2 Feature Detection
  • 3.3.1.3 Feature Description
  • 3.3.1.4 Descriptor Matching and Pairwise Image Orientation (Fundamental Matrices)
  • 3.3.1.5 Triangulation
  • 3.3.1.6 Bundle Adjustment
  • 3.3.1.7 Defining a Coordinate Reference System
  • 3.3.1.8 Dense Multi-view Stereo (MVS)
  • 3.3.1.9 Georeferenced 3D Model and Orthophoto
  • 3.3.2 Tools
  • 3.3.2.1 Software
  • 3.3.2.2 Hardware
  • 3.4 Case Studies
  • 3.4.1 Trea (Italy)
  • 3.4.2 Kreuttal Region (Austria)
  • 3.4.3 Pitaranha (Portugal-Spain)
  • Conclusion
  • References.
  • 4: Roman Urban Survey: The Mapping and Monitoring of Complex Settlement Sites with Active Aerial Photography
  • 4.1 Introduction: Surveying Abandoned Roman Towns
  • 4.2 Discovery and Monitoring
  • 4.3 Mapping, Interpretation and Integration
  • 4.4 The Potenza Valley Towns from the Air
  • Conclusion
  • References
  • 5: Integrated Approach for Archaeological Prospection Exploiting Airborne Hyperspectral Remote Sensing
  • 5.1 Introduction
  • 5.1.1 Overview of Remote Sensing for Archaeological Prospection
  • 5.1.2 Background Literature on Hyperspectral Remote Sensing
  • 5.2 Integrated Approach for Archaeological Prospection
  • 5.2.1 Selinunte Archaeological Park
  • 5.2.2 Mothia and Marsala Archaeological Areas
  • 5.2.3 Arpi Archaeological Site
  • 5.2.4 Albanian Archaeological Site
  • 5.3 Integration Data, Results and Methodologies for Archaeological Prospection
  • 5.3.1 Integration Data for Archaeological Prospection
  • 5.3.2 Comparison and Appending of the Results for Archaeological Prospection
  • 5.3.3 Exportation of the Characteristic Methods of Each Datum, Technique and Application for Employing with Other Datum, Techniques and Applications for Archaeological Prospection
  • 5.4 Evaluation and Ranking the Results of Integrated Approach
  • 5.4.1 Image Obtained by Integrated Approach
  • 5.4.2 Methods to Evaluate and Rank the Image Obtained by the Integrated Approach
  • 5.5 Results
  • 5.5.1 The Quality of Images Collected by Each Sensor
  • 5.5.2 The Capability of the Merged Images
  • 5.5.3 The Capability of the Synthetic Images
  • Conclusion
  • References
  • 6: Skin Deep: LiDAR and Good Practice of Landscape Archaeology
  • 6.1 Introduction
  • 6.2 What Do We Do?
  • 6.3 LiDAR as an Inscription Device
  • 6.4 LiDAR as Topography
  • 6.5 How to Read Traces?
  • 6.6 Time and Palimpsests
  • Conclusion
  • References.
  • Part II: Geophysics
  • 7: Magnetic Exploration of Archaeological Sites
  • 7.1 A Basic Overview of a Magnetic Survey
  • 7.2 Is the Archaeological Site Suitable for a Magnetic Survey?
  • 7.3 Examples of Magnetic Surveys
  • 7.4 Selecting a Magnetometer
  • 7.5 Field Procedures
  • 7.6 Data Processing and Display
  • 7.7 Interpretation of Magnetic Maps
  • 7.8 The Geophysical Report
  • 7.9 Excavations
  • 7.10 The Technical Side of Geophysics
  • 7.11 Sources of Information
  • References
  • 8: Earth Resistance Survey: A Mature Archaeological Geophysics Method for Archaeology
  • 8.1 Introduction
  • 8.2 Principles of Earth Resistance Surveys
  • 8.3 Typical Resistance Features in Classical Archaeology
  • 8.4 Filters in Earth Resistance Interpretation
  • 8.5 Future Developments of Earth Resistance Surveys
  • References
  • 9: Ground-Penetrating Radar (GPR)
  • 9.1 Brief Historical Review
  • 9.2 Brief Note on Principle and Systems
  • 9.3 Basic 3D Imaging
  • 9.4 3D GPR Methodologies for Archaeological Prospection
  • 9.4.1 Standard 3D Surveying or Pseudo 3D
  • 9.4.2 Full-Resolution or True 3D or Ultradense 3D Surveying
  • 9.4.3 Other Methodologies
  • 9.4.4 Best Practices
  • 9.5 Current State-of-the-Art Technology: Multichannel Array Systems
  • Conclusions
  • References
  • 10: Interpretation and Guidelines for Reporting
  • 10.1 Introduction
  • 10.2 Interpretation of Geophysical Data
  • 10.2.1 Basic Principles
  • 10.2.2 A Priori Information
  • 10.2.3 Magnetic Data
  • 10.2.4 GPR Data
  • 10.2.5 Electrical Resistivity Data
  • 10.2.6 Typical Interpretation Pitfalls
  • 10.3 Survey Reports
  • 10.3.1 Structure of Survey Reports
  • 10.3.2 Description of Methodology
  • 10.3.3 Presentation of Survey Results
  • 10.3.4 Data Archiving
  • References
  • Part III: Topographic and Geoarchaeological Surveys
  • 11: Intra-site Artefact Surveys.
  • 11.1 The Development of Survey Methodology
  • 11.2 Collection Size
  • 11.3 What Is Being Collected?
  • 11.4 Ancillary Aids to Surface Ceramic Survey
  • 11.5 Case Studies
  • Conclusions
  • References
  • 12: Site Discovery and Evaluation Through Minimal Interventions: Core Sampling, Test Pits and Trial Trenches
  • 12.1 Introduction
  • 12.2 Minimal Interventions
  • 12.3 Minimal Interventions and Site Discovery
  • 12.3.1 Intersection Probability
  • 12.3.2 Detection Probability
  • 12.3.3 Optimal Strategies for Site Discovery
  • 12.4 Minimal Interventions and Site Evaluation
  • 12.5 Minimal Interventions and Non-invasive Techniques
  • 12.5.1 Survey Techniques and Heritage Management Systems
  • 12.5.2 Combining Invasive and Non-invasive Techniques: On the Way to Best Practice
  • References
  • 13: Creating and Analysing Digital Terrain Models for Archaeological Research
  • 13.1 Digital Terrain Models: A Definition
  • 13.2 Data Acquisition
  • 13.2.1 Methods for Data Acquisition
  • 13.2.1.1 Total Station
  • 13.2.1.2 GNSS Receivers
  • How Does It Work?
  • 13.2.1.3 Digital Photogrammetry
  • 13.2.1.4 Secondary Data Sources
  • 13.2.2 Interpolation
  • 13.2.2.1 Types of Interpolation Methods
  • Raster Model Based
  • Inverse Distance Weighted (IDW)
  • Kriging
  • Splines
  • Vector Model Based
  • Triangulated Irregular Network (TIN)
  • Interpolation from Contour Lines
  • 13.3 How Do We Use Models for Archaeological Research?
  • References
  • 14: The Geoarchaeological Approach
  • 14.1 Introduction
  • 14.2 The Rise of a Concept
  • 14.3 General Principles of the Geoarchaeological Approach
  • 14.4 In-Site and Off-Site Studies
  • 14.5 Prior to Any Geoarchaeological Study
  • 14.6 The Stages of the Geoarchaeological Approach
  • 14.7 The Contribution of Geomorphology to the Geoarchaeological Approach
  • Conclusion
  • References.
  • Part IV: Visualisation and Site Management
  • 15: Implementing Best Practice in Cultural Heritage Visualisation: The London Charter
  • 15.1 The London Charter for the Computer-Based Visualisation of Cultural Heritage (Version 2.1, 2009)
  • 15.1.1 Preamble
  • 15.1.2 Objectives
  • 15.1.3 Principles
  • 15.1.3.1 Principle 1: Implementation
  • 15.1.3.2 Principle 2: Aims and Methods
  • 15.1.3.3 Principle 3: Research Sources
  • 15.1.3.4 Principle 4: Documentation
  • Enhancing Practice
  • Documentation of Knowledge Claims
  • Documentation of Research Sources
  • Documentation of Process (Paradata)
  • Documentation of Methods
  • Documentation of Dependency Relationships
  • Documentation Formats and Standards
  • 15.1.3.5 Principle 5: Sustainability
  • 15.1.3.6 Principle 6: Access
  • 15.2 Commentary on the London Charter
  • 15.2.1 Preamble and Objectives
  • 15.2.1.1 Principle 1: Implementation
  • 15.2.1.2 Principle 2: Aims and Methods
  • 15.2.1.3 Principle 3: Research Sources
  • 15.2.1.4 Principle 4: Documentation
  • 15.2.1.5 Principle 5: Sustainability
  • 15.2.1.6 Principle 6: Access
  • References
  • 16: International Guidelines for Virtual Archaeology: The Seville Principles
  • 16.1 Virtual Archaeology: Definition and Term
  • 16.2 Historical Background to the Creation of an International Charter of Virtual Archaeology
  • 16.3 Principles of the Charter
  • 16.3.1 Principle 1: Interdisciplinarity
  • 16.3.2 Principle 2: Purpose
  • 16.3.3 Principle 3: Complementarity
  • 16.3.4 Principle 4: Authenticity
  • 16.3.5 Principle 5: Historical Rigour
  • 16.3.6 Principle 6: Efficiency
  • 16.3.7 Principle 7: Scientific Transparency
  • 16.3.8 Principle 8: Training and Evaluation
  • 16.4 Definitions
  • References
  • 17: Reconstructing Past Landscapes for Virtual Museums
  • 17.1 Introduction
  • 17.2 Uncertainty Towards Transparency.
  • 17.2.1 Virtual Museums and Virtual Archaeology Survey.