|
|
|
|
LEADER |
03850namaa2201177ui 4500 |
001 |
003027749 |
005 |
20221228154154.0 |
003 |
DE-2553 |
006 |
m o d |
007 |
cr|mn|---annan |
008 |
20210211s2019 xx |||||o ||| 0|eng d |
020 |
|
|
|a books978-3-03921-801-1
|
020 |
|
|
|a 9783039218011
|
020 |
|
|
|a 9783039218004
|
040 |
|
|
|a oapen
|c oapen
|b eng
|d DE-2553
|e rda
|
024 |
7 |
|
|a 10.3390/books978-3-03921-801-1
|c doi
|
041 |
0 |
|
|a eng
|
042 |
|
|
|a dc
|
100 |
1 |
|
|a Mihai, Ion
|e author
|
245 |
1 |
0 |
|a Differential Geometry
|
264 |
|
|
|b MDPI - Multidisciplinary Digital Publishing Institute,
|c 2019.
|
300 |
|
|
|a 1 online resource (166 pages).
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
506 |
0 |
|
|a Open Access
|2 star
|f Unrestricted online access
|
540 |
|
|
|a Creative Commons
|f https://creativecommons.org/licenses/by-nc-nd/4.0/
|2 cc
|4 https://creativecommons.org/licenses/by-nc-nd/4.0/
|
546 |
|
|
|a English
|
653 |
|
|
|a statistical structure
|
653 |
|
|
|a constant ratio submanifolds
|
653 |
|
|
|a Euclidean submanifold
|
653 |
|
|
|a framed helices
|
653 |
|
|
|a Sasakian statistical manifold
|
653 |
|
|
|a L2-harmonic forms
|
653 |
|
|
|a Hodge-Laplacian
|
653 |
|
|
|a complete connection
|
653 |
|
|
|a concircular vector field
|
653 |
|
|
|a cylindrical hypersurface
|
653 |
|
|
|a k-th generalized Tanaka-Webster connection
|
653 |
|
|
|a Casorati curvature
|
653 |
|
|
|a symplectic curves
|
653 |
|
|
|a generalized 1-type Gauss map
|
653 |
|
|
|a rectifying submanifold
|
653 |
|
|
|a manifold with singularity
|
653 |
|
|
|a ruled surface
|
653 |
|
|
|a Minkowski plane
|
653 |
|
|
|a compact complex surfaces
|
653 |
|
|
|a conjugate connection
|
653 |
|
|
|a T-submanifolds
|
653 |
|
|
|a L2-Stokes theorem
|
653 |
|
|
|a inextensible flow
|
653 |
|
|
|a shape operator
|
653 |
|
|
|a generalized normalized ?-Casorati curvature
|
653 |
|
|
|a Sasakian manifold
|
653 |
|
|
|a centrodes
|
653 |
|
|
|a circular helices
|
653 |
|
|
|a non-flat complex space form
|
653 |
|
|
|a invariant
|
653 |
|
|
|a Frenet frame
|
653 |
|
|
|a Darboux frame
|
653 |
|
|
|a trans-Sasakian 3-manifold
|
653 |
|
|
|a singular points
|
653 |
|
|
|a symplectic curvatures
|
653 |
|
|
|a Kähler-Einstein metrics
|
653 |
|
|
|a conjugate symmetric statistical structure
|
653 |
|
|
|a sectional ?-curvature
|
653 |
|
|
|a circular rectifying curves
|
653 |
|
|
|a developable surface
|
653 |
|
|
|a capacity
|
653 |
|
|
|a Ricci soliton
|
653 |
|
|
|a Reeb flow symmetry
|
653 |
|
|
|a Minkowskian pseudo-angle
|
653 |
|
|
|a conical surface
|
653 |
|
|
|a lie derivative
|
653 |
|
|
|a position vector field
|
653 |
|
|
|a pinching of the curvatures
|
653 |
|
|
|a Hessian manifolds
|
653 |
|
|
|a Minkowskian angle
|
653 |
|
|
|a Hessian sectional curvature
|
653 |
|
|
|a Minkowskian length
|
653 |
|
|
|a lightlike surface
|
653 |
|
|
|a affine sphere
|
653 |
|
|
|a concurrent vector field
|
653 |
|
|
|a slant
|
653 |
|
|
|a affine hypersurface
|
653 |
|
|
|a anti-invariant
|
653 |
|
|
|a statistical manifolds
|
653 |
|
|
|a Ricci operator
|
653 |
|
|
|a C-Bochner tensor
|
653 |
|
|
|a Ricci curvature
|
653 |
|
|
|a real hypersurface
|
653 |
|
|
|a scalar curvature
|
653 |
|
|
|a framed rectifying curves
|
856 |
4 |
0 |
|a www.oapen.org
|u https://mdpi.com/books/pdfview/book/1834
|7 0
|z DOAB: download the publication
|
856 |
4 |
0 |
|a www.oapen.org
|u https://directory.doabooks.org/handle/20.500.12854/45107
|7 0
|z DOAB: description of the publication
|
590 |
|
|
|a Online publication
|
590 |
|
|
|a ebookoa1222
|
590 |
|
|
|a doab
|
942 |
|
|
|2 z
|c EB
|
999 |
|
|
|c 3027749
|d 1431504
|
952 |
|
|
|0 0
|1 0
|2 z
|4 0
|6 ONLINE
|7 1
|9 973388
|R 2022-12-28 14:41:54
|a DAIG
|b DAIG
|l 0
|o Online
|r 2022-12-28
|y EB
|