Recent Advances in Motion Analysis
Weitere Verfasser: |
Di Nardo, Francesco
, [HerausgeberIn]
Fioretti, Sandro , [HerausgeberIn] |
---|---|
Umfang/Format: |
1 online resource (192 pages). |
Schlagworte: | |
Online Zugang: |
DOAB: download the publication DOAB: description of the publication |
LEADER | 03558namaa2201153ui 4500 | ||
---|---|---|---|
001 | 003028038 | ||
005 | 20221228154415.0 | ||
003 | DE-2553 | ||
006 | m o d | ||
007 | cr|mn|---annan | ||
008 | 20220111s2021 xx |||||o ||| 0|eng d | ||
020 | |a books978-3-0365-0439-1 | ||
020 | |a 9783036504384 | ||
020 | |a 9783036504391 | ||
040 | |a oapen |c oapen |b eng |d DE-2553 |e rda | ||
024 | 7 | |a 10.3390/books978-3-0365-0439-1 |c doi | |
041 | 0 | |a eng | |
042 | |a dc | ||
072 | 7 | |a TB |2 bicssc | |
100 | 1 | |a Di Nardo, Francesco |e editor | |
264 | |b MDPI - Multidisciplinary Digital Publishing Institute, |c 2021. | ||
700 | 1 | |a Fioretti, Sandro |e editor | |
700 | 1 | |a Di Nardo, Francesco |e other | |
700 | 1 | |a Fioretti, Sandro |e other | |
245 | 1 | 0 | |a Recent Advances in Motion Analysis |
300 | |a 1 online resource (192 pages). | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
506 | 0 | |a Open Access |2 star |f Unrestricted online access | |
540 | |a Creative Commons |f https://creativecommons.org/licenses/by/4.0/ |2 cc |4 https://creativecommons.org/licenses/by/4.0/ | ||
546 | |a English | ||
650 | 7 | |a Technology: general issues |2 bicssc | |
653 | |a falls | ||
653 | |a slips | ||
653 | |a trips | ||
653 | |a postural perturbations | ||
653 | |a wearables | ||
653 | |a stretch-sensors | ||
653 | |a ankle kinematics | ||
653 | |a rowing | ||
653 | |a technology | ||
653 | |a inertial sensor | ||
653 | |a accelerometer | ||
653 | |a performance | ||
653 | |a signal processing | ||
653 | |a sEMG | ||
653 | |a knee | ||
653 | |a random forest | ||
653 | |a principal component analysis | ||
653 | |a back propagation | ||
653 | |a estimation model | ||
653 | |a knee angle | ||
653 | |a deep learning | ||
653 | |a neural networks | ||
653 | |a gait-phase classification | ||
653 | |a electrogoniometer | ||
653 | |a EMG sensors | ||
653 | |a walking | ||
653 | |a gait-event detection | ||
653 | |a automotive radar | ||
653 | |a machine learning | ||
653 | |a walking analysis | ||
653 | |a seated posture | ||
653 | |a cognitive engagement | ||
653 | |a stress level | ||
653 | |a load cells | ||
653 | |a embedded systems | ||
653 | |a sensorized seat | ||
653 | |a flexion-relaxation phenomenon | ||
653 | |a surface electromyography | ||
653 | |a wearable device | ||
653 | |a WBSN | ||
653 | |a automatic detection of the FRP | ||
653 | |a Internet of Things (IoT) | ||
653 | |a human activity recognition (HAR) | ||
653 | |a motion analysis | ||
653 | |a wearable sensors | ||
653 | |a cerebral palsy | ||
653 | |a hemiplegia | ||
653 | |a motor disorders | ||
653 | |a gait variability | ||
653 | |a coefficient of variation | ||
653 | |a surface EMG | ||
653 | |a statistical gait analysis | ||
653 | |a activation patterns | ||
653 | |a co-activation | ||
653 | |a Parkinson's disease | ||
653 | |a activity recognition | ||
653 | |a rate invariance | ||
653 | |a Lie group | ||
856 | 4 | 0 | |a www.oapen.org |u https://mdpi.com/books/pdfview/book/3661 |7 0 |z DOAB: download the publication |
856 | 4 | 0 | |a www.oapen.org |u https://directory.doabooks.org/handle/20.500.12854/76283 |7 0 |z DOAB: description of the publication |
590 | |a Online publication | ||
590 | |a ebookoa1222 | ||
590 | |a doab | ||
942 | |2 z |c EB | ||
999 | |c 3028038 |d 1431793 | ||
952 | |0 0 |1 0 |2 z |4 0 |6 ONLINE |7 1 |9 973677 |R 2022-12-28 14:44:15 |a DAIG |b DAIG |l 0 |o Online |r 2022-12-28 |y EB |