Artificial Neural Networks in Agriculture
Weitere Verfasser: |
Kujawa, Sebastian
, [HerausgeberIn]
Niedbała, Gniewko , [HerausgeberIn] |
---|---|
Umfang/Format: |
1 online resource (283 pages). |
Schlagworte: | |
Online Zugang: |
DOAB: download the publication DOAB: description of the publication |
LEADER | 04613namaa2201477ui 4500 | ||
---|---|---|---|
001 | 003028041 | ||
005 | 20221228154415.0 | ||
003 | DE-2553 | ||
006 | m o d | ||
007 | cr|mn|---annan | ||
008 | 20220111s2021 xx |||||o ||| 0|eng d | ||
020 | |a books978-3-0365-1579-3 | ||
020 | |a 9783036515809 | ||
020 | |a 9783036515793 | ||
040 | |a oapen |c oapen |b eng |d DE-2553 |e rda | ||
024 | 7 | |a 10.3390/books978-3-0365-1579-3 |c doi | |
041 | 0 | |a eng | |
042 | |a dc | ||
072 | 7 | |a GP |2 bicssc | |
072 | 7 | |a PS |2 bicssc | |
072 | 7 | |a T |2 bicssc | |
100 | 1 | |a Kujawa, Sebastian |e editor | |
264 | |b MDPI - Multidisciplinary Digital Publishing Institute, |c 2021. | ||
700 | 1 | |a Niedbała, Gniewko |e editor | |
700 | 1 | |a Kujawa, Sebastian |e other | |
700 | 1 | |a Niedbała, Gniewko |e other | |
245 | 1 | 0 | |a Artificial Neural Networks in Agriculture |
300 | |a 1 online resource (283 pages). | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
506 | 0 | |a Open Access |2 star |f Unrestricted online access | |
540 | |a Creative Commons |f https://creativecommons.org/licenses/by/4.0/ |2 cc |4 https://creativecommons.org/licenses/by/4.0/ | ||
546 | |a English | ||
650 | 7 | |a Research & information: general |2 bicssc | |
650 | 7 | |a Biology, life sciences |2 bicssc | |
650 | 7 | |a Technology, engineering, agriculture |2 bicssc | |
653 | |a artificial neural network (ANN) | ||
653 | |a Grain weevil identification | ||
653 | |a neural modelling classification | ||
653 | |a winter wheat | ||
653 | |a grain | ||
653 | |a artificial neural network | ||
653 | |a ferulic acid | ||
653 | |a deoxynivalenol | ||
653 | |a nivalenol | ||
653 | |a MLP network | ||
653 | |a sensitivity analysis | ||
653 | |a precision agriculture | ||
653 | |a machine learning | ||
653 | |a similarity | ||
653 | |a metric | ||
653 | |a memory | ||
653 | |a deep learning | ||
653 | |a plant growth | ||
653 | |a dynamic response | ||
653 | |a root zone temperature | ||
653 | |a dynamic model | ||
653 | |a NARX neural networks | ||
653 | |a hydroponics | ||
653 | |a vegetation indices | ||
653 | |a UAV | ||
653 | |a neural network | ||
653 | |a corn plant density | ||
653 | |a corn canopy cover | ||
653 | |a yield prediction | ||
653 | |a CLQ | ||
653 | |a GA-BPNN | ||
653 | |a GPP-driven spectral model | ||
653 | |a rice phenology | ||
653 | |a EBK | ||
653 | |a correlation filter | ||
653 | |a crop yield prediction | ||
653 | |a hybrid feature extraction | ||
653 | |a recursive feature elimination wrapper | ||
653 | |a artificial neural networks | ||
653 | |a big data | ||
653 | |a classification | ||
653 | |a high-throughput phenotyping | ||
653 | |a modeling | ||
653 | |a predicting | ||
653 | |a time series forecasting | ||
653 | |a soybean | ||
653 | |a food production | ||
653 | |a paddy rice mapping | ||
653 | |a dynamic time warping | ||
653 | |a LSTM | ||
653 | |a weakly supervised learning | ||
653 | |a cropland mapping | ||
653 | |a apparent soil electrical conductivity (ECa) | ||
653 | |a magnetic susceptibility (MS) | ||
653 | |a EM38 | ||
653 | |a neural networks | ||
653 | |a Phoenix dactylifera L. | ||
653 | |a Medjool dates | ||
653 | |a image classification | ||
653 | |a convolutional neural networks | ||
653 | |a transfer learning | ||
653 | |a average degree of coverage | ||
653 | |a coverage unevenness coefficient | ||
653 | |a optimization | ||
653 | |a high-resolution imagery | ||
653 | |a oil palm tree | ||
653 | |a CNN | ||
653 | |a Faster-RCNN | ||
653 | |a image identification | ||
653 | |a agroecology | ||
653 | |a weeds | ||
653 | |a yield gap | ||
653 | |a environment | ||
653 | |a health | ||
653 | |a crop models | ||
653 | |a soil and plant nutrition | ||
653 | |a automated harvesting | ||
653 | |a model application for sustainable agriculture | ||
653 | |a remote sensing for agriculture | ||
653 | |a decision supporting systems | ||
653 | |a neural image analysis | ||
856 | 4 | 0 | |a www.oapen.org |u https://mdpi.com/books/pdfview/book/4046 |7 0 |z DOAB: download the publication |
856 | 4 | 0 | |a www.oapen.org |u https://directory.doabooks.org/handle/20.500.12854/76601 |7 0 |z DOAB: description of the publication |
590 | |a Online publication | ||
590 | |a ebookoa1222 | ||
590 | |a doab | ||
942 | |2 z |c EB | ||
999 | |c 3028041 |d 1431796 | ||
952 | |0 0 |1 0 |2 z |4 0 |6 ONLINE |7 1 |9 973680 |R 2022-12-28 14:44:16 |a DAIG |b DAIG |l 0 |o Online |r 2022-12-28 |y EB |