|
|
|
|
LEADER |
03446namaa2201033ui 4500 |
001 |
003028119 |
005 |
20221228154426.0 |
003 |
DE-2553 |
006 |
m o d |
007 |
cr|mn|---annan |
008 |
20220111s2021 xx |||||o ||| 0|eng d |
020 |
|
|
|a books978-3-0365-2693-5
|
020 |
|
|
|a 9783036526928
|
020 |
|
|
|a 9783036526935
|
040 |
|
|
|a oapen
|c oapen
|b eng
|d DE-2553
|e rda
|
024 |
7 |
|
|a 10.3390/books978-3-0365-2693-5
|c doi
|
041 |
0 |
|
|a eng
|
042 |
|
|
|a dc
|
072 |
|
7 |
|a KNTX
|2 bicssc
|
100 |
1 |
|
|a Gocheva-Ilieva, Snezhana
|e editor
|
264 |
|
|
|b MDPI - Multidisciplinary Digital Publishing Institute,
|c 2021.
|
700 |
1 |
|
|a Gocheva-Ilieva, Snezhana
|e other
|
245 |
1 |
0 |
|a Statistical Data Modeling and Machine Learning with Applications
|
300 |
|
|
|a 1 online resource (184 pages).
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
506 |
0 |
|
|a Open Access
|2 star
|f Unrestricted online access
|
540 |
|
|
|a Creative Commons
|f https://creativecommons.org/licenses/by/4.0/
|2 cc
|4 https://creativecommons.org/licenses/by/4.0/
|
546 |
|
|
|a English
|
650 |
|
7 |
|a Information technology industries
|2 bicssc
|
653 |
|
|
|a mathematical competency
|
653 |
|
|
|a assessment
|
653 |
|
|
|a machine learning
|
653 |
|
|
|a classification and regression tree
|
653 |
|
|
|a CART ensembles and bagging
|
653 |
|
|
|a ensemble model
|
653 |
|
|
|a multivariate adaptive regression splines
|
653 |
|
|
|a cross-validation
|
653 |
|
|
|a dam inflow prediction
|
653 |
|
|
|a long short-term memory
|
653 |
|
|
|a wavelet transform
|
653 |
|
|
|a input predictor selection
|
653 |
|
|
|a hyper-parameter optimization
|
653 |
|
|
|a brain-computer interface
|
653 |
|
|
|a EEG motor imagery
|
653 |
|
|
|a CNN-LSTM architectures
|
653 |
|
|
|a real-time motion imagery recognition
|
653 |
|
|
|a artificial neural networks
|
653 |
|
|
|a banking
|
653 |
|
|
|a hedonic prices
|
653 |
|
|
|a housing
|
653 |
|
|
|a quantile regression
|
653 |
|
|
|a data quality
|
653 |
|
|
|a citizen science
|
653 |
|
|
|a consensus models
|
653 |
|
|
|a clustering
|
653 |
|
|
|a Gower's interpolation formula
|
653 |
|
|
|a Gower's metric
|
653 |
|
|
|a mixed data
|
653 |
|
|
|a multidimensional scaling
|
653 |
|
|
|a classification
|
653 |
|
|
|a data-adaptive kernel functions
|
653 |
|
|
|a image data
|
653 |
|
|
|a multi-category classifier
|
653 |
|
|
|a predictive models
|
653 |
|
|
|a support vector machine
|
653 |
|
|
|a stochastic gradient descent
|
653 |
|
|
|a damped Newton
|
653 |
|
|
|a convexity
|
653 |
|
|
|a METABRIC dataset
|
653 |
|
|
|a breast cancer subtyping
|
653 |
|
|
|a deep forest
|
653 |
|
|
|a multi-omics data
|
653 |
|
|
|a categorical data
|
653 |
|
|
|a similarity
|
653 |
|
|
|a feature selection
|
653 |
|
|
|a kernel density estimation
|
653 |
|
|
|a non-linear optimization
|
653 |
|
|
|a kernel clustering
|
653 |
|
|
|a n/a
|
856 |
4 |
0 |
|a www.oapen.org
|u https://mdpi.com/books/pdfview/book/4733
|7 0
|z DOAB: download the publication
|
856 |
4 |
0 |
|a www.oapen.org
|u https://directory.doabooks.org/handle/20.500.12854/77114
|7 0
|z DOAB: description of the publication
|
590 |
|
|
|a Online publication
|
590 |
|
|
|a ebookoa1222
|
590 |
|
|
|a doab
|
942 |
|
|
|2 z
|c EB
|
999 |
|
|
|c 3028119
|d 1431874
|
952 |
|
|
|0 0
|1 0
|2 z
|4 0
|6 ONLINE
|7 1
|9 973758
|R 2022-12-28 14:44:26
|a DAIG
|b DAIG
|l 0
|o Online
|r 2022-12-28
|y EB
|