Symmetry in Classical and Fuzzy Algebraic Hypercompositional Structures
1. Verfasser: |
Cristea, Irina
, [VerfasserIn]
|
---|---|
Umfang/Format: |
1 online resource (208 pages). |
ISBN: | books978-3-03928-709-3 9783039287093 9783039287086 |
Schlagworte: | |
Online-Zugang: |
DOAB: download the publication DOAB: description of the publication |
MARC
LEADER | 00000namaa2200000ui 4500 | ||
---|---|---|---|
001 | 003028302 | ||
005 | 20221228154450.0 | ||
003 | DE-2553 | ||
006 | m o d | ||
007 | cr|mn|---annan | ||
008 | 20210212s2020 xx |||||o ||| 0|eng d | ||
020 | |a books978-3-03928-709-3 | ||
020 | |a 9783039287093 | ||
020 | |a 9783039287086 | ||
040 | |a oapen |c oapen |b eng |d DE-2553 |e rda | ||
024 | 7 | |a 10.3390/books978-3-03928-709-3 |c doi | |
041 | 0 | |a eng | |
042 | |a dc | ||
100 | 1 | |a Cristea, Irina |e author | |
245 | 1 | 0 | |a Symmetry in Classical and Fuzzy Algebraic Hypercompositional Structures |
264 | |b MDPI - Multidisciplinary Digital Publishing Institute, |c 2020. | ||
300 | |a 1 online resource (208 pages). | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
506 | 0 | |a Open Access |2 star |f Unrestricted online access | |
540 | |a Creative Commons |f https://creativecommons.org/licenses/by-nc-nd/4.0/ |2 cc |4 https://creativecommons.org/licenses/by-nc-nd/4.0/ | ||
546 | |a English | ||
653 | |a intuitionistic fuzzy soft strong hyper BCK-ideal | ||
653 | |a time-varying artificial neuron | ||
653 | |a clustering protocols | ||
653 | |a 1-hypergroup | ||
653 | |a fuzzy multi-Hv-ideal | ||
653 | |a multisets | ||
653 | |a q-rung picture fuzzy line graphs | ||
653 | |a semi-symmetry | ||
653 | |a rough set | ||
653 | |a quasi-multiautomaton | ||
653 | |a height | ||
653 | |a transposition hypergroup | ||
653 | |a Hv-ring | ||
653 | |a m-polar fuzzy hypergraphs | ||
653 | |a Hv-structures | ||
653 | |a selection operation | ||
653 | |a upper approximation | ||
653 | |a invertible subhypergroup | ||
653 | |a breakable semigroup | ||
653 | |a intuitionistic fuzzy soft weak hyper BCK ideal | ||
653 | |a functions on multiset | ||
653 | |a submultiset | ||
653 | |a m-polar fuzzy equivalence relation | ||
653 | |a semihypergroup | ||
653 | |a granular computing | ||
653 | |a q-rung picture fuzzy graphs | ||
653 | |a linear differential operator | ||
653 | |a perfect edge regular | ||
653 | |a Hv-ideal | ||
653 | |a lower BCK-semilattice | ||
653 | |a square q-rung picture fuzzy graphs | ||
653 | |a minimal prime decomposition | ||
653 | |a level hypergraphs | ||
653 | |a hyperfield | ||
653 | |a quasi-automaton | ||
653 | |a hyperring | ||
653 | |a semi-prime closure operation | ||
653 | |a edge regular | ||
653 | |a UWSN | ||
653 | |a (hyper)homography | ||
653 | |a relative annihilator | ||
653 | |a hypergroup | ||
653 | |a intuitionistic fuzzy soft s-weak hyper BCK-ideal | ||
653 | |a fundamental equivalence relation | ||
653 | |a intuitionistic fuzzy soft hyper BCK ideal | ||
653 | |a hyperideal | ||
653 | |a lower approximation | ||
653 | |a multiset | ||
653 | |a fundamental relation | ||
653 | |a ego networks | ||
653 | |a application | ||
653 | |a minimal prime factor | ||
653 | |a single-power cyclic hypergroup | ||
653 | |a ordered group | ||
653 | |a fuzzy multiset | ||
856 | 4 | 0 | |a www.oapen.org |u https://mdpi.com/books/pdfview/book/2344 |7 0 |z DOAB: download the publication |
856 | 4 | 0 | |a www.oapen.org |u https://directory.doabooks.org/handle/20.500.12854/60381 |7 0 |z DOAB: description of the publication |
590 | |a Online publication | ||
590 | |a ebookoa1222 | ||
590 | |a doab | ||
942 | |2 z |c EB | ||
952 | |0 0 |1 0 |2 z |4 0 |6 ONLINE |7 1 |9 973941 |R 2022-12-28 15:44:50 |a DAIG |b DAIG |l 0 |o Online |r 2022-12-28 00:00:00 |y EB | ||
999 | |c 3028302 |d 1432057 |