Symmetry in the Mathematical Inequalities
Weitere Verfasser: |
Minculete, Nicusor
, [HerausgeberIn]
Furuichi, Shigeru , [HerausgeberIn] |
---|---|
Umfang/Format: |
1 online resource (276 pages). |
Schlagworte: | |
Online Zugang: |
DOAB: download the publication DOAB: description of the publication |
LEADER | 03718namaa2201105ui 4500 | ||
---|---|---|---|
001 | 003028753 | ||
005 | 20221228154811.0 | ||
003 | DE-2553 | ||
006 | m o d | ||
007 | cr|mn|---annan | ||
008 | 20220621s2022 xx |||||o ||| 0|eng d | ||
020 | |a books978-3-0365-4006-1 | ||
020 | |a 9783036540054 | ||
020 | |a 9783036540061 | ||
040 | |a oapen |c oapen |b eng |d DE-2553 |e rda | ||
024 | 7 | |a 10.3390/books978-3-0365-4006-1 |c doi | |
041 | 0 | |a eng | |
042 | |a dc | ||
072 | 7 | |a GP |2 bicssc | |
072 | 7 | |a RG |2 bicssc | |
100 | 1 | |a Minculete, Nicusor |e editor | |
264 | |b MDPI - Multidisciplinary Digital Publishing Institute, |c 2022. | ||
700 | 1 | |a Furuichi, Shigeru |e editor | |
700 | 1 | |a Minculete, Nicusor |e other | |
700 | 1 | |a Furuichi, Shigeru |e other | |
245 | 1 | 0 | |a Symmetry in the Mathematical Inequalities |
300 | |a 1 online resource (276 pages). | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
506 | 0 | |a Open Access |2 star |f Unrestricted online access | |
540 | |a Creative Commons |f https://creativecommons.org/licenses/by/4.0/ |2 cc |4 https://creativecommons.org/licenses/by/4.0/ | ||
546 | |a English | ||
650 | 7 | |a Research & information: general |2 bicssc | |
650 | 7 | |a Geography |2 bicssc | |
653 | |a Ostrowski inequality | ||
653 | |a Hölder's inequality | ||
653 | |a power mean integral inequality | ||
653 | |a n-polynomial exponentially s-convex function | ||
653 | |a weight coefficient | ||
653 | |a Euler-Maclaurin summation formula | ||
653 | |a Abel's partial summation formula | ||
653 | |a half-discrete Hilbert-type inequality | ||
653 | |a upper limit function | ||
653 | |a Hermite-Hadamard inequality | ||
653 | |a (p, q)-calculus | ||
653 | |a convex functions | ||
653 | |a trapezoid-type inequality | ||
653 | |a fractional integrals | ||
653 | |a functions of bounded variations | ||
653 | |a (p,q)-integral | ||
653 | |a post quantum calculus | ||
653 | |a convex function | ||
653 | |a a priori bounds | ||
653 | |a 2D primitive equations | ||
653 | |a continuous dependence | ||
653 | |a heat source | ||
653 | |a Jensen functional | ||
653 | |a A-G-H inequalities | ||
653 | |a global bounds | ||
653 | |a power means | ||
653 | |a Simpson-type inequalities | ||
653 | |a thermoelastic plate | ||
653 | |a Phragmén-Lindelöf alternative | ||
653 | |a Saint-Venant principle | ||
653 | |a biharmonic equation | ||
653 | |a symmetric function | ||
653 | |a Schur-convexity | ||
653 | |a inequality | ||
653 | |a special means | ||
653 | |a Shannon entropy | ||
653 | |a Tsallis entropy | ||
653 | |a Fermi-Dirac entropy | ||
653 | |a Bose-Einstein entropy | ||
653 | |a arithmetic mean | ||
653 | |a geometric mean | ||
653 | |a Young's inequality | ||
653 | |a Simpson's inequalities | ||
653 | |a post-quantum calculus | ||
653 | |a spatial decay estimates | ||
653 | |a Brinkman equations | ||
653 | |a midpoint and trapezoidal inequality | ||
653 | |a Simpson's inequality | ||
653 | |a harmonically convex functions | ||
653 | |a Simpson inequality | ||
653 | |a (n,m)-generalized convexity | ||
653 | |a n/a | ||
856 | 4 | 0 | |a www.oapen.org |u https://mdpi.com/books/pdfview/book/5511 |7 0 |z DOAB: download the publication |
856 | 4 | 0 | |a www.oapen.org |u https://directory.doabooks.org/handle/20.500.12854/84528 |7 0 |z DOAB: description of the publication |
590 | |a Online publication | ||
590 | |a ebookoa1222 | ||
590 | |a doab | ||
942 | |2 z |c EB | ||
999 | |c 3028753 |d 1432508 | ||
952 | |0 0 |1 0 |2 z |4 0 |6 ONLINE |7 1 |9 974392 |R 2022-12-28 14:48:11 |a DAIG |b DAIG |l 0 |o Online |r 2022-12-28 |y EB |