Women in Artificial intelligence (AI)
Weitere Verfasser: |
Valls, Aida
, [HerausgeberIn]
Gibert, Karina , [HerausgeberIn] |
---|---|
Umfang/Format: |
1 online resource (332 pages). |
Schlagworte: | |
Online Zugang: |
DOAB: download the publication DOAB: description of the publication |
LEADER | 04588namaa2201525ui 4500 | ||
---|---|---|---|
001 | 003028815 | ||
005 | 20221228154820.0 | ||
003 | DE-2553 | ||
006 | m o d | ||
007 | cr|mn|---annan | ||
008 | 20221117s2022 xx |||||o ||| 0|eng d | ||
020 | |a books978-3-0365-5532-4 | ||
020 | |a 9783036555324 | ||
020 | |a 9783036555317 | ||
040 | |a oapen |c oapen |b eng |d DE-2553 |e rda | ||
024 | 7 | |a 10.3390/books978-3-0365-5532-4 |c doi | |
041 | 0 | |a eng | |
042 | |a dc | ||
072 | 7 | |a TB |2 bicssc | |
072 | 7 | |a TBX |2 bicssc | |
100 | 1 | |a Valls, Aida |e editor | |
264 | |b MDPI - Multidisciplinary Digital Publishing Institute, |c 2022. | ||
700 | 1 | |a Gibert, Karina |e editor | |
700 | 1 | |a Valls, Aida |e other | |
700 | 1 | |a Gibert, Karina |e other | |
245 | 1 | 0 | |a Women in Artificial intelligence (AI) |
300 | |a 1 online resource (332 pages). | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
506 | 0 | |a Open Access |2 star |f Unrestricted online access | |
540 | |a Creative Commons |f https://creativecommons.org/licenses/by/4.0/ |2 cc |4 https://creativecommons.org/licenses/by/4.0/ | ||
546 | |a English | ||
650 | 7 | |a Technology: general issues |2 bicssc | |
650 | 7 | |a History of engineering & technology |2 bicssc | |
653 | |a artificial intelligence | ||
653 | |a computer-aided diagnosis | ||
653 | |a computed tomography | ||
653 | |a lung cancer | ||
653 | |a deep learning | ||
653 | |a lung nodule detection | ||
653 | |a lung nodule segmentation | ||
653 | |a convolutional neural network | ||
653 | |a cellular automaton | ||
653 | |a reconstruction | ||
653 | |a complexity | ||
653 | |a optimization | ||
653 | |a high energy physics | ||
653 | |a Reddit | ||
653 | |a user-based model | ||
653 | |a polarization | ||
653 | |a local search optimization | ||
653 | |a hate speech | ||
653 | |a hate spread | ||
653 | |a countermeasures | ||
653 | |a social networks | ||
653 | |a opinion diffusion | ||
653 | |a education | ||
653 | |a deferring hate content | ||
653 | |a cyber activism | ||
653 | |a classical Arabic | ||
653 | |a short vowels | ||
653 | |a audio dataset | ||
653 | |a convolutional neural networks | ||
653 | |a regularization | ||
653 | |a machine learning | ||
653 | |a segmentation | ||
653 | |a clustering | ||
653 | |a forecasting | ||
653 | |a book copies | ||
653 | |a publishing industry | ||
653 | |a gamification | ||
653 | |a adaptive gamification | ||
653 | |a player types | ||
653 | |a computational finance | ||
653 | |a fuzzy logic | ||
653 | |a membership function | ||
653 | |a Type-1 fuzzy sets | ||
653 | |a T1FLS | ||
653 | |a Type-2 fuzzy sets | ||
653 | |a T2FLS | ||
653 | |a women | ||
653 | |a research | ||
653 | |a CURE | ||
653 | |a hierarchical clustering | ||
653 | |a cluster validity indices | ||
653 | |a Calinski-Harabasz index | ||
653 | |a bootstrapping | ||
653 | |a Industry 4.0 | ||
653 | |a 3D printing | ||
653 | |a cognitive states | ||
653 | |a mental workload | ||
653 | |a EEG analysis | ||
653 | |a neural networks | ||
653 | |a multimodal data fusion | ||
653 | |a peer assessment | ||
653 | |a multiagent system | ||
653 | |a probabilistic model | ||
653 | |a comparative analysis | ||
653 | |a Bayesian network | ||
653 | |a Artificial Intelligence | ||
653 | |a urban water cycle | ||
653 | |a hydrosocial urban cycle | ||
653 | |a urban political ecology | ||
653 | |a gender gap | ||
653 | |a equity | ||
653 | |a explainable AI | ||
653 | |a fuzzy rules | ||
653 | |a dominance-based rough set approach | ||
653 | |a diabetic retinopathy | ||
653 | |a AI | ||
653 | |a disease surveillance | ||
653 | |a pandemics | ||
653 | |a global public health | ||
653 | |a ethics | ||
653 | |a data | ||
653 | |a missing datasets | ||
653 | |a data-driven studies | ||
653 | |a women in artificial intelligence | ||
653 | |a women in data science | ||
653 | |a women in STEM | ||
653 | |a n/a | ||
856 | 4 | 0 | |a www.oapen.org |u https://mdpi.com/books/pdfview/book/6194 |7 0 |z DOAB: download the publication |
856 | 4 | 0 | |a www.oapen.org |u https://directory.doabooks.org/handle/20.500.12854/93766 |7 0 |z DOAB: description of the publication |
590 | |a Online publication | ||
590 | |a ebookoa1222 | ||
590 | |a doab | ||
942 | |2 z |c EB | ||
999 | |c 3028815 |d 1432570 | ||
952 | |0 0 |1 0 |2 z |4 0 |6 ONLINE |7 1 |9 974454 |R 2022-12-28 14:48:20 |a DAIG |b DAIG |l 0 |o Online |r 2022-12-28 |y EB |