|
|
|
|
LEADER |
09433namaa2202557ui 4500 |
001 |
003027816 |
005 |
20221228154203.0 |
003 |
DE-2553 |
006 |
m o d |
007 |
cr|mn|---annan |
008 |
20210211s2019 xx |||||o ||| 0|eng d |
020 |
|
|
|a books978-3-03921-939-1
|
020 |
|
|
|a 9783039219384
|
020 |
|
|
|a 9783039219391
|
040 |
|
|
|a oapen
|c oapen
|b eng
|d DE-2553
|e rda
|
024 |
7 |
|
|a 10.3390/books978-3-03921-939-1
|c doi
|
041 |
0 |
|
|a eng
|
042 |
|
|
|a dc
|
100 |
1 |
|
|a Smarandache, Florentin
|e author
|
245 |
1 |
0 |
|a New types of Neutrosophic Set/Logic/Probability, Neutrosophic Over-/Under-/Off-Set, Neutrosophic Refined Set, and their Extension to Plithogenic Set/Logic/Probability, with Applications
|
264 |
|
|
|b MDPI - Multidisciplinary Digital Publishing Institute,
|c 2019.
|
300 |
|
|
|a 1 online resource (714 pages).
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
506 |
0 |
|
|a Open Access
|2 star
|f Unrestricted online access
|
540 |
|
|
|a Creative Commons
|f https://creativecommons.org/licenses/by-nc-nd/4.0/
|2 cc
|4 https://creativecommons.org/licenses/by-nc-nd/4.0/
|
546 |
|
|
|a English
|
653 |
|
|
|a nonstandard neutrosophic supremum
|
653 |
|
|
|a classical statistics
|
653 |
|
|
|a complex neutrosophic set
|
653 |
|
|
|a neutrosophic offnorm
|
653 |
|
|
|a neutrosophic extended triplet group
|
653 |
|
|
|a multi-attribute decision-making (MADM)
|
653 |
|
|
|a neutrosophic time series
|
653 |
|
|
|a refined neutrosophic quadruple numbers
|
653 |
|
|
|a BNHHA aggregation operator
|
653 |
|
|
|a neutrosophic offconorm
|
653 |
|
|
|a monad
|
653 |
|
|
|a matrix representation
|
653 |
|
|
|a left monad closed to the right
|
653 |
|
|
|a implicator
|
653 |
|
|
|a neutrsophic set
|
653 |
|
|
|a neutrosophic correlation
|
653 |
|
|
|a neutrosophic cubic sets
|
653 |
|
|
|a decision-making
|
653 |
|
|
|a MoBiNad set
|
653 |
|
|
|a open and closed monads to the left/right
|
653 |
|
|
|a distance measure
|
653 |
|
|
|a De Morgan neutrosophic triples
|
653 |
|
|
|a group decision making
|
653 |
|
|
|a financial assets
|
653 |
|
|
|a soft expert set
|
653 |
|
|
|a uninorm
|
653 |
|
|
|a multi-attribute group decision making
|
653 |
|
|
|a sampling plan
|
653 |
|
|
|a cubic sets
|
653 |
|
|
|a neutrosophic cubic ordered weighted geometric operator (NCOWG)
|
653 |
|
|
|a shale gas water management system
|
653 |
|
|
|a weighted average operator
|
653 |
|
|
|a aggregation operations
|
653 |
|
|
|a quality function deployment
|
653 |
|
|
|a Einstein t-norm
|
653 |
|
|
|a neutrosophic rings
|
653 |
|
|
|a non-standard neutrosophic topology
|
653 |
|
|
|a BNHWA aggregation operator
|
653 |
|
|
|a hypergroup
|
653 |
|
|
|a triangular neutrosophic cubic fuzzy number
|
653 |
|
|
|a pierced and unpierced binads
|
653 |
|
|
|a numerical application
|
653 |
|
|
|a neutrosophic cubic weighted geometric operator (NCWG)
|
653 |
|
|
|a relations
|
653 |
|
|
|a extended nonstandard analysis
|
653 |
|
|
|a arithmetic averaging operator
|
653 |
|
|
|a nonstandard reals
|
653 |
|
|
|a Choquet integral
|
653 |
|
|
|a Function approximation
|
653 |
|
|
|a neutrosophic triangular norms
|
653 |
|
|
|a weighted geometric operator
|
653 |
|
|
|a neutrosophic regression
|
653 |
|
|
|a optimization solution
|
653 |
|
|
|a ordinary single valued neutrosophic neighborhood system
|
653 |
|
|
|a smart port
|
653 |
|
|
|a neutrosophic topology
|
653 |
|
|
|a multi-criteria decision making techniques
|
653 |
|
|
|a low-carbon supplier selection
|
653 |
|
|
|a producer's risk
|
653 |
|
|
|a quasi-completely regular semigroup
|
653 |
|
|
|a score function
|
653 |
|
|
|a MAGDM
|
653 |
|
|
|a multicriteria decision-making
|
653 |
|
|
|a neutrosophic soft rough
|
653 |
|
|
|a NET-hypergroup
|
653 |
|
|
|a refined neutrosophic numbers
|
653 |
|
|
|a neutrosophic logical relationship groups
|
653 |
|
|
|a combined weighted average
|
653 |
|
|
|a TOPSIS
|
653 |
|
|
|a neutrosophic logical relationship
|
653 |
|
|
|a logarithmic aggregation operators
|
653 |
|
|
|a non-standard analysis
|
653 |
|
|
|a multi-attribute decision-making
|
653 |
|
|
|a neutrosophic extended triplet semihypergroup (NET-semihypergroup)
|
653 |
|
|
|a aggregation
|
653 |
|
|
|a nonstandard neutrosophic logic
|
653 |
|
|
|a symmetric relation
|
653 |
|
|
|a uncertainty modeling
|
653 |
|
|
|a single valued neutrosophic sets
|
653 |
|
|
|a BNHOWA aggregation operator
|
653 |
|
|
|a ordinary single valued neutrosophic subspace
|
653 |
|
|
|a generalized neutrosophic extended triplet group
|
653 |
|
|
|a multi-attribute decision making
|
653 |
|
|
|a ordinary single valued neutrosophic base
|
653 |
|
|
|a nonstandard arithmetic operations
|
653 |
|
|
|a pierced binad
|
653 |
|
|
|a MCGDM problems
|
653 |
|
|
|a simplified neutrosophic set
|
653 |
|
|
|a residuated lattices
|
653 |
|
|
|a Neutrosophic compound orthogonal neural network
|
653 |
|
|
|a rough set approximation
|
653 |
|
|
|a single-valued neutrosophic linguistic set
|
653 |
|
|
|a binad
|
653 |
|
|
|a multi-granulation neutrosophic rough set
|
653 |
|
|
|a single valued neutrosophic set
|
653 |
|
|
|a infinitesimals
|
653 |
|
|
|a standard reals
|
653 |
|
|
|a soft set
|
653 |
|
|
|a non-standard neutrosophic mobinad set
|
653 |
|
|
|a certainty function
|
653 |
|
|
|a neutrosophic weight
|
653 |
|
|
|a two universes
|
653 |
|
|
|a sample size
|
653 |
|
|
|a n-person cooperative game
|
653 |
|
|
|a paper defect diagnosis
|
653 |
|
|
|a performance indicators
|
653 |
|
|
|a semihypergroup
|
653 |
|
|
|a logarithmic operational laws
|
653 |
|
|
|a right monad closed to the left
|
653 |
|
|
|a idempotents
|
653 |
|
|
|a unpierced binad
|
653 |
|
|
|a neutrosophic cubic hybrid weighted arithmetic and geometric aggregation operator (NCHWAGA)
|
653 |
|
|
|a neutrosophic symmetric scenarios
|
653 |
|
|
|a extended nonstandard neutrosophic logic
|
653 |
|
|
|a neutrosophic statistics
|
653 |
|
|
|a neutrosophic goal programming approach
|
653 |
|
|
|a neutrosophic offset
|
653 |
|
|
|a neutrosophic statistical interval method
|
653 |
|
|
|a weighted multiple instance learning
|
653 |
|
|
|a neutrosophic cubic Einstein ordered weighted geometric operator (NCEOWG)
|
653 |
|
|
|a fuzzy parameterized single valued neutrosophic soft expert set
|
653 |
|
|
|a single-valued neutrosophic soft number and its operations
|
653 |
|
|
|a Internet of Things
|
653 |
|
|
|a extended non-standard analysis
|
653 |
|
|
|a dietary fat level
|
653 |
|
|
|a soft sets
|
653 |
|
|
|a visual tracking
|
653 |
|
|
|a neutrosophic offuninorm
|
653 |
|
|
|a neutrosophic cubic Einstein weighted geometric operator (NCEWG)
|
653 |
|
|
|a ordinary single valued neutrosophic subbase
|
653 |
|
|
|a membership function
|
653 |
|
|
|a non-dual
|
653 |
|
|
|a SVN soft weighted arithmetic averaging operator
|
653 |
|
|
|a Q-neutrosophic set
|
653 |
|
|
|a neutrosophic sets
|
653 |
|
|
|a fuzzy numbers
|
653 |
|
|
|a intuitionistic fuzzy parameters
|
653 |
|
|
|a producer's risk'
|
653 |
|
|
|a graph representation
|
653 |
|
|
|a exponential similarity measure
|
653 |
|
|
|a infinities
|
653 |
|
|
|a maximizing deviation
|
653 |
|
|
|a Multi-attribute decision making
|
653 |
|
|
|a SVN soft weighted geometric averaging operator
|
653 |
|
|
|a objectness
|
653 |
|
|
|a Q-neutrosophic soft set
|
653 |
|
|
|a accuracy function
|
653 |
|
|
|a consumer's risk
|
653 |
|
|
|a decision making
|
653 |
|
|
|a Neutrosophic number
|
653 |
|
|
|a clifford semigroup
|
653 |
|
|
|a neutrosophic numbers
|
653 |
|
|
|a neutrosophic residual implications
|
653 |
|
|
|a nonstandard neutrosophic lattices of first type (as poset) and second type (as algebraic structure)
|
653 |
|
|
|a covering
|
653 |
|
|
|a e-marketing
|
653 |
|
|
|a nonstandard analysis
|
653 |
|
|
|a neutrosophic quadruple rings
|
653 |
|
|
|a complex neutrosophic soft expert set
|
653 |
|
|
|a single-valued neutrosophic set
|
653 |
|
|
|a neutrosophic cubic soft expert system
|
653 |
|
|
|a neutrosophic cubic soft sets
|
653 |
|
|
|a triangular neutrosophic number
|
653 |
|
|
|a supply chain sustainability metrics
|
653 |
|
|
|a neutrosophic quadruple numbers
|
653 |
|
|
|a ?-level
|
653 |
|
|
|a nonstandard neutrosophic infimum
|
653 |
|
|
|a infinitely ?-distributive
|
653 |
|
|
|a plithogeny
|
653 |
|
|
|a neutrosophic set
|
653 |
|
|
|a fuzzy logic
|
653 |
|
|
|a prospector
|
653 |
|
|
|a Neutrosophic function
|
653 |
|
|
|a representable neutrosophic t-norms
|
653 |
|
|
|a probabilistic neutrosophic hesitant fuzzy set (PNHFS)
|
653 |
|
|
|a prostate cancer
|
653 |
|
|
|a nonstandard unit interval
|
653 |
|
|
|a port evaluation
|
653 |
|
|
|a simplified neutrosophic hesitant fuzzy set
|
653 |
|
|
|a ordinary single valued neutrosophic (co)topology
|
856 |
4 |
0 |
|a www.oapen.org
|u https://mdpi.com/books/pdfview/book/1848
|7 0
|z DOAB: download the publication
|
856 |
4 |
0 |
|a www.oapen.org
|u https://directory.doabooks.org/handle/20.500.12854/54635
|7 0
|z DOAB: description of the publication
|
590 |
|
|
|a Online publication
|
590 |
|
|
|a ebookoa1222
|
590 |
|
|
|a doab
|
942 |
|
|
|2 z
|c EB
|
999 |
|
|
|c 3027816
|d 1431571
|
952 |
|
|
|0 0
|1 0
|2 z
|4 0
|6 ONLINE
|7 1
|9 973455
|R 2022-12-28 14:42:03
|a DAIG
|b DAIG
|l 0
|o Online
|r 2022-12-28
|y EB
|