Regularized System Identification : Learning Dynamic Models from Data
1. Verfasser: |
Pillonetto, Gianluigi
, [VerfasserIn]
Chen, Tianshi , [VerfasserIn] Chiuso, Alessandro , [VerfasserIn] De Nicolao, Giuseppe , [VerfasserIn] Ljung, Lennart , [VerfasserIn] |
---|---|
Umfang/Format: |
1 online resource (377 pages). |
Schriftenreihe: |
Communications and Control Engineering
|
Schlagworte: | |
Online Zugang: |
DOAB: download the publication DOAB: description of the publication |
LEADER | 02642namaa2200733ui 4500 | ||
---|---|---|---|
001 | 003028794 | ||
005 | 20221228154817.0 | ||
003 | DE-2553 | ||
006 | m o d | ||
007 | cr|mn|---annan | ||
008 | 20220621s2022 xx |||||o ||| 0|eng d | ||
020 | |a 978-3-030-95860-2 | ||
020 | |a 9783030958602 | ||
040 | |a oapen |c oapen |b eng |d DE-2553 |e rda | ||
024 | 7 | |a 10.1007/978-3-030-95860-2 |c doi | |
041 | 0 | |a eng | |
042 | |a dc | ||
072 | 7 | |a UYQM |2 bicssc | |
072 | 7 | |a TJFM |2 bicssc | |
072 | 7 | |a PHS |2 bicssc | |
072 | 7 | |a PBTB |2 bicssc | |
072 | 7 | |a PBT |2 bicssc | |
072 | 7 | |a GPFC |2 bicssc | |
100 | 1 | |a Pillonetto, Gianluigi |e author | |
264 | |b Springer Nature, |c 2022. | ||
700 | 1 | |a Chen, Tianshi |e author | |
700 | 1 | |a Chiuso, Alessandro |e author | |
700 | 1 | |a De Nicolao, Giuseppe |e author | |
700 | 1 | |a Ljung, Lennart |e author | |
245 | 1 | 0 | |a Regularized System Identification : |b Learning Dynamic Models from Data |
300 | |a 1 online resource (377 pages). | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Communications and Control Engineering | |
506 | 0 | |a Open Access |2 star |f Unrestricted online access | |
536 | |a National Natural Science Foundation of China | ||
540 | |a Creative Commons |f by/4.0/ |2 cc |4 http://creativecommons.org/licenses/by/4.0/ | ||
546 | |a English | ||
650 | 7 | |a Machine learning |2 bicssc | |
650 | 7 | |a Automatic control engineering |2 bicssc | |
650 | 7 | |a Statistical physics |2 bicssc | |
650 | 7 | |a Bayesian inference |2 bicssc | |
650 | 7 | |a Probability & statistics |2 bicssc | |
650 | 7 | |a Cybernetics & systems theory |2 bicssc | |
653 | |a System Identification | ||
653 | |a Machine Learning | ||
653 | |a Linear Dynamical Systems | ||
653 | |a Nonlinear Dynamical Systems | ||
653 | |a Kernel-based Regularization | ||
653 | |a Bayesian Interpretation of Regularization | ||
653 | |a Gaussian Processes | ||
653 | |a Reproducing Kernel Hilbert Spaces | ||
653 | |a Estimation Theory | ||
653 | |a Support Vector Machines | ||
653 | |a Regularization Networks | ||
856 | 4 | 0 | |a www.oapen.org |u https://library.oapen.org/bitstream/20.500.12657/56998/1/978-3-030-95860-2.pdf |7 0 |z DOAB: download the publication |
856 | 4 | 0 | |a www.oapen.org |u https://directory.doabooks.org/handle/20.500.12854/84390 |7 0 |z DOAB: description of the publication |
590 | |a Online publication | ||
590 | |a ebookoa1222 | ||
590 | |a doab | ||
942 | |2 z |c EB | ||
999 | |c 3028794 |d 1432549 | ||
952 | |0 0 |1 0 |2 z |4 0 |6 ONLINE |7 1 |9 974433 |R 2022-12-28 14:48:17 |a DAIG |b DAIG |l 0 |o Online |r 2022-12-28 |y EB |